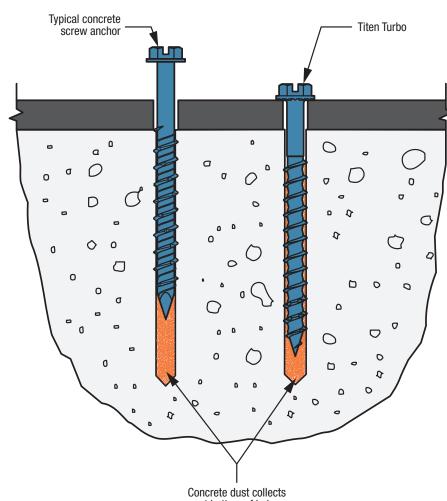
Titen Turbo[™] Concrete and Masonry Screw Anchor

Smooth driving with less torque while providing superior holding power

We asked contractors how we could improve on existing concrete screws, and the result of the feedback is the Titen Turbo™ screw anchor for concrete and masonry. Titen Turbo delivers what pros want — consistently trouble-free installation, and fastening strength they can depend on.



6-lobe head

Titen Turbo Flat Head Screw Patent Pending

Titen Turbo Hex-Head Screw Patent Pending

at bottom of hole

Torque Reduction Channel

Displaces Dust for Trouble-Free Installation
US Patent Pending

The secret behind the performance of the Titen Turbo screw anchor lies in its patented thread design, which enables smooth driving with less torque while providing superior holding power. The revolutionary Torque Reduction Channel between the threads gives drilling dust a place to go, thereby significantly reducing torque-related issues like binding, stripping and snapping without compromising strength.

Features

- Patent-pending Torque Reduction Channel that displaces dust where it can't obstruct the thread action, reducing the likelihood of binding in the hole
- Availability with either a hex head or, for a flush profile, a 6-lobe-drive countersunk flat head
- The 6-lobe drive's larger contact area provides better bit grip for reduced cam-outs, more torque, better performance and longer bit life
- 6-lobe bit included in packaging for countersunk flat head version
- Superior tension load performance compared to leading competitors in the market
- Matched-tolerance bit not required; use a standard ANSI drill bit for installation
- Serrated screw point for easier starts when fastening wood
- · Designed for installation with an impact driver or cordless drill
- Use in dry interior environments only
- Code listed in accordance with ICC-ES AC193 for concrete and ICC-ES AC106 for masonry applications without cleaning dust from predrilled holes

Codes:

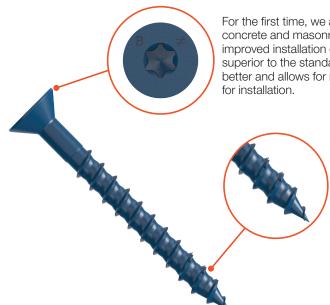
IAPMO UES ER-712 (concrete); IAPMO UES ER-716 (masonry)

Material: Carbon steel

Finish: Zinc plated with baked ceramic coating

Versatile Applications

Sliding door track installation


Window frames

Furring strips

Anatomy of the Titen Turbo™ (TNT) Concrete and Masonry Screw Anchor

Next Generation TNT screw anchor designed to improve installation experience with lower torque and higher loads than the competition.

For the first time, we are introducing a 6-lobe drive concrete and masonry screw anchor to provide improved installation experience. This design is superior to the standard Phillip's bit as it grabs better and allows for more torque to be provided for installation

The revolutionary Torque Reduction Channel features a patented asymmetrical thread design with dust channel that allows more space for dust

Serration on leading threads to effectively cut the concrete or masonry

Pointed tip for easy attachment of wood to concrete or for wood-to-wood applications

Blue Titen Turbo™ Product Data (¾16" diameter)

Size	Head Style	Model No.	Drill Bit Dia.	Quantity	
3126	neau Style	WIDUEI NO.	שוווו סונ טומ.	Pack	Carton
3/16 X 1 1/4		TNT18114H		100	1,600
3/16 X 1 3/4		TNT18134H		100	500
3/16 X 21/4	1/." Hov	TNT18214H	5/32"	100	500
3/16 X 23/4	1/4" Hex	TNT18234H	732	100	500
3/16 X 31/4		TNT18314H		100	400
3/16 X 33/4		TNT18334H		100	400
3/16 X 1 1/4		TNT18114TF		100	1,600
3/16 X 1 3/4		TNT18134TF		100	500
3/16 X 21/4	TOT C Labo Flat	TNT18214TF	5/ 11	100	500
3/16 X 23/4	T25 6-Lobe Flat	TNT18234TF	5/32"	100	500
3/16 X 31/4		TNT18314TF		100	400
3/16 X 33/4		TNT18334TF		100	400

Blue Titen Turbo Product Data (1/4" diameter)

Size	Head Style	Model No.	Drill Bit Dia.	Quantity	
3126	neau Style	Model No.	טוווו טונ טומ.	Pack	Carton
1/4 X 1 1/4		TNT25114H		100	1,600
1/4 x 13/4		TNT25134H		100	500
1/4 x 21/4		TNT25214H		100	500
1/4 x 23/4		TNT25234H		100	500
1/4 x 3 1/4	5⁄16" Hex	TNT25314H	3/16"	100	400
1/4 x 33/4		TNT25334H		100	400
1/4 x 4		TNT25400H		100	400
1⁄4 x 5		TNT25500H		100	400
1/4 x 6		TNT25600H		100	400
1/4 x 1 1/4		TNT25114TF		100	1,600
1/4 x 13/4		TNT25134TF		100	500
1/4 x 21/4		TNT25214TF		100	500
1/4 x 23/4	T30 6-Lobe Flat	TNT25234TF	3/16"	100	500
1/4 x 3 1/4		TNT25314TF		100	400
1/4 x 33/4		TNT25334TF		100	400
1/4 X 4		TNT25400TF		100	400

White Titen Turbo Product Data (6-Lobe Flat Head)

Size	Head Style	Model No.	Drill Bit Dia.	Qua	Quantity	
3126	nead Style Model No.		שווו סונ טומ.	Pack	Carton	
3/16 X 1 1/4		TNTW18114TF		100	1,600	
3/16 X 13/4		TNTW18134TF		100	500	
3/16 X 21/4	T25 6-Lobe Flat	TNTW18214TF	5/32"	100	500	
3/16 X 23/4	120 0-Lobe Flat	TNTW18234TF		100	500	
3/16 X 31/4		TNTW18314TF		100	400	
3/16 X 33/4		TNTW18334TF		100	400	
1/4 X 1 1/4		TNTW25114TF		100	1,600	
½ x 1¾		TNTW25134TF		100	500	
1/4 x 21/4	T30 6-Lobe Flat	TNTW25214TF	3/16"	100	500	
1/4 x 23/4	130 0-Love Flat	TNTW25234TF	9/16	100	500	
1/4 x 3 1/4		TNTW25314TF		100	400	
1/4 x 33/4		TNTW25334TF		100	400	

Silver Titen Turbo Product Data (6-Lobe Flat Head)

			/	
Size	Head Style	Model No.	Drill Bit Dia.	Quantity
3/ ₁₆ X 1 3/ ₄		TNTS18134TFB	5/32"	1,000
3/16 X 23/4	T25 6-Lobe Flat	TNTS18234TFB		1,000
3/16 X 33/4		TNTS18334TFB		1,000
1/4 x 23/4	T30 6-Lobe Flat	TNTS25234TFB	3/16"	1,000
1/4 x 3 1/4	130 6-Lode Fiat	TNTS25314TFB	716	1,000

SIMPSON Strong-Tie

Easy, fast, reliable — you've got to drive it to believe it!

Titen Turbo™ Installation Information and Additional Data¹

Characteristic	Cumbal	Units	Nominal Ancho	Nominal Anchor Diameter (in.)				
Gharacteristic	Symbol	Units	3/16	1/4				
Installation Information								
Drill Bit Diameter	d	in.	5/32	3/16				
Minimum Baseplate Clearance Hole Diameter	d_c	in.	1/4	5/16				
Minimum Hole Depth	h _{hole}	in.	21/4	21/4				
Embedment Depth	h _{nom}	in.	13/4	1 3/4				
Effective Embedment Depth	h _{ef}	in.	1.25	1.20				
Critical Edge Distance	C _{ac}	in.	3	3				
Minimum Edge Distance	C _{min}	in.	13/4	13/4				
Minimum Spacing	\mathcal{S}_{min}	in.	1	2				
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4				
	Additional Data							
Yield Strength	f_{ya}	psi	100	,000				
Tensile Strength	f _{uta}	psi	125,000					
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0131	0.0211				

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

Titen Turbo Tension Strength Design Data¹

Characteristic	Cumbal	Units	Nominal Ancho	Nominal Anchor Diameter (in.)			
Gladacteristic	Symbol	Uillis	3/16	1/4			
Anchor Category	1, 2 or 3	_		1			
Embedment Depth	h _{nom}	in.	13⁄4	13/4			
Steel Strength in Tension							
Tension Resistance of Steel	N_{sa}	lb.	1,640	2,640			
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_	0.	65 ²			
Concrete E	reakout Strength in	Tension					
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C_{ac}	in.	3	3			
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_	2	24			
Modification Factor	$\Psi_{c,N}$	_	1	.0			
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.65^{3}				
Pullout Strength in Tension							
Pullout Resistance Uncracked Concrete (f' = 2,500 psi) ⁴	$N_{p,uncr}$	lb.	1,515	1,515			
Strength Reduction Factor — Pullout Failure	$\phi_{\scriptscriptstyle ho}$	_	0.	65 ⁵			

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} The tabulated value of ϕ_{Sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

^{3.} The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B applies when supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ_{cb} factor described in ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4.

^{4.} The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2500)^{0.23} for 1/4" screw anchors. No increase in the characteristic pullout resistance for greater compressive strengths is permitted for 3/16" screw anchors.

^{5.} The tabulated value of ϕ_D applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

Titen Turbo Shear Strength Design Data¹ Into Concrete

Characteristic	Cumbal	Units	Nominal Anchor Diameter (in.)			
	Symbol	Ullits	3/16	1/4		
Anchor Category	1, 2 or 3	_	1			
Embedment Depth	h _{nom}	in.	13⁄4	13⁄4		
	Steel Strength	n Shear				
Shear Resistance of Steel	V_{sa}	lb.	475	720		
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_	0.60^{2}			
	Concrete Breakout Str	ength in Shear				
Outside Diameter	d_a	in.	0.129	0.164		
Load Bearing Length of Anchor in Shear	l _e	in.	1.25	1.20		
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.7	70 ³		
Concrete Pryout Strength in Shear						
Coefficient for Pryout Strength	K _{cp}	_	1.0			
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_	0.7	7O ⁴		

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 2. The tabulated value of ϕ_{Sa} applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.
- 3. The tabulated value of ϕ_{Cb} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B

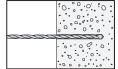
applies when supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{Cb} factor described in ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4.

4. The tabulated value of φ_{CP} applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 (c).

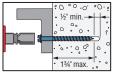
Titen Turbo™ Screw Anchor — Installation Tool

Six-piece kit includes:

- 6-lobe bit socket
- T25 and T30 bits
- 1/4" and 5/16" hex sockets
- Canvas storage bag


Titen Turbo Installation Tool

Model	Quantity		
No.	Clamshell	Carton	
TNTINSTALLKIT	1	4	



Titen Turbo Screw Anchor Installation Kit

Installation Sequence

Titen® Screw Anchor — Drill Bits

Size	Model	Use '	Use With		ntity
(in.)	No.	Screw	Length	Box	Carton
5/32 X 3 1/2	MDB15312		To 1 3/4	12	48
5/ ₃₂ x 4 1/ ₂	MDB15412	3/16" diameter	To 31/4		
5/32 X 5 1/2	MDB15512	diamotor	To 4		
3/16 X 3 1/2	MDB18312		To 13/4	12	48
3/16 X 4 1/2	MDB18412	½" diameter	To 3 1/4		
3/16 X 5 1/2	MDB18512	diamotor	To 4		

SDS-Plus® Drill Bits

Size (in.)	Model No.	For Screw Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)
5⁄32 X 6	MDPL01506H	3/	31/8	6
5/ ₃₂ x 7	MDPL01507H	3/16	4 1/8	7
3∕16 X 5	MDPL01805H		2%	5
3∕16 X 6	MDPL01806H	1/4	31/8	6
3∕16 X 7	MDPL01807H		41/8	7

Titen drivers are sold individually.

Allowable Tension Load for Titen Turbo[™] Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor	Embedment	Minimum Dimensions			Allowable Load
Diameter (in.)	Depth (in.)	Spacing (in.)	Edge (in.)	End (in.)	(lb.) ⁴
3/16	2	3	37/8	37/8	267
3/16	2	3	1½	37/8	267
1/4	2	4	37/8	37/8	393
1/4	2	4	1½	37/8	343

- 1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum f'm of 1,500 psi at time of installation.
- Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- 3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor	Embedment	Minimum Dimensions		sions		Allowable Load
Diameter (in.)	Depth (in.)	Spacing (in.)	Edge (in.)	End (in.)	Direction of Loading	(lb.) ⁴
3/16	2	3	37/8	37/8	Toward edge, parallel to wall end	218
3/16	2	3	1 ½	37/8	Toward wall end, parallel to wall edge	218
1/4	2	4	37/8	37/8	Toward edge, parallel to wall end	342
1/4	2	4	1 1/2	37/8	Toward wall end, parallel to wall edge	283

- The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum f'm of 1,500 psi at time of installation.
- 2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.
- Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

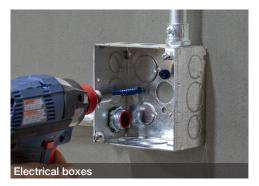
Allowable Tension Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter (in.)	Embedment Depth (in.)		Allowable		
		Spacing (in.)	Edge (in.)	End (in.)	Load (lb.) ⁴
3/16	11/4	3	31/8	31/8	117
1/4	11/4	4	37/8	37/8	117

- 1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum f'm of 1,500 psi at time of installation.
- 2. Embedment is the thickness of the face shell.
- Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter (in.)	Embedment Depth (in.)	Minimum Dimensions			Direction of	Allowable
		Spacing (in.)	Edge (in.)	End (in.)	Loading	Load (lb.)⁴
3/16	11/4	3	37/8	37/8	Toward edge, parallel to wall end	164
1/4	11/4	4	37/8	37/8	Toward edge, parallel to wall end	190


- 1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum $f'_{\mbox{\scriptsize m}}$ of 1,500 psi at time of installation.
- 2. Embedment is the thickness of the face shell.

- Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

SIMPSON Strong-Tie

Easy, fast, reliable — you've got to drive it to believe it!

For use in attaching electrical boxes, conduit, switch boxes, light fixtures or window frames into concrete or masonry-based materials and more.

Applications

- Electrical boxes
- Conduit
- Switch boxes
- · Light fixtures
- Window frames
- Thresholds
- Furring strips
- Handrails
- Shelf mounting to concrete/CMU

To locate your local dealer, visit **strongtie.com/dealerlocator**.